
CSE 8B Spring 2023
Assignment 8

Interfaces

Due: Wednesday, June 7, 11:59 PM

Learning goals:

● Apply knowledge of Concrete Classes, Interfaces, and Inheritance by building an Animal
Kingdom Game.

● Apply knowledge of UML diagrams to create files and methods.

Your grade will be determined by your most recent submission. If you submit to
Gradescope after the deadline, it will be marked late and the late penalty will apply
regardless of whether you had past submissions before the deadline.

If your code does not compile on Gradescope, you will receive an automatic zero on the
assignment.

Coding Style (10 points)
For this programming assignment, we will be enforcing the CSE 8B Coding Style
Guidelines. These guidelines can also be found on Canvas. Please ensure to have
COMPLETE file headers, class headers, and method headers, to use descriptive variable
names and proper indentation, and to avoid using magic numbers.

Part 0: Getting started (0 points)
1. If using a personal computer, then ensure your Java software development environment

does not have any issues. If there are any issues, then review Assignment 1, or come to
the office/lab hours before you start Assignment 8.

2. First, navigate to the cse8b folder you created in Assignment 1 and create a new folder
named assignment8.

3. This assignment does NOT have any starter code.
4. You can compile all files in the directory using the single command javac *.java.
5. The objective of this assignment is to create the necessary files and implement the

methods that follow the relationships set up by the UML diagram.

https://cseweb.ucsd.edu/classes/sp23/cse8B-a/styleguide.html
https://cseweb.ucsd.edu/classes/sp23/cse8B-a/styleguide.html

Part 1: Overview

Scenario:

CSE 8B is coming to an end, and we’ve learned a lot this quarter! Let’s have some fun with this
last assignment and create a simple text-based animal fighting game, additionally implementing
extra methods along the way to round out our animal kingdom! Basically, the game involves two
animals fighting each other in an endless number of rounds until one of them (or both) run out of
health! All the details will be explained below, but let’s first take a high-level look at the structure.

Logistics:

For this assignment, you will be implementing the classes shown in the following UML diagram.

In the UML diagram above, each rectangle in the UML diagram represents a class. There is an Animal

superclass that multiple subclasses extend from: Lion, Tiger, Elephant, Rhino, Snake, and Frog. There

are three interfaces: Carnivore, Herbivore, and Poisonous. Remember, the solid line with hollow

triangle represents inheritance (extends) and the dotted line with hollow triangle represents implementing

an interface. If the image looks blurry in the write-up, then open PA8_UML.pdf.

Before you start programming, please take some time to review the write-up and to read the

instructions below CAREFULLY. Some of the methods have been provided for you, but
because we are not giving any starter code, you will have to copy and paste the necessary code

into your own file. You will still need to supply those methods with a method header for coding

style points. You should fully understand the purpose of each variable and the usage for each

method before you implement anything.

NOTE 1: You must NOT change any data field or method signature defined in the write-up. As

such, do NOT add any additional parameters to methods. Feel free to add any helper methods if

desired.

NOTE 2: Especially because we are not providing the starter code, do NOT forget to adhere to

the CSE 8B style guidelines. Declare any necessary constants to adhere to guidelines.

NOTE 3: You can assume that all inputs will be valid, unless specified otherwise.

Be sure to compile your code often, so that you can catch compile errors early on! Recall, to
compile multiple Java files, use:

> javac *.java

You will be implementing methods in every provided Java class, with the Store class having the

majority of the functionality of this program.

Notice how each member field is declared private. This means that the member is only
visible within the class, not from any other class. In other words, you will need to use accessors
(i.e., getter methods) and mutators (i.e., setter methods) to access and modify, respectively,
these private members. You must also use the this keyword to access member variables
hidden by local variables.

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

Part 2: Animal.java (10 points)
First, you need to implement the class named Animal. This is the superclass for most of the

other classes in this assignment (as seen in the UML diagram). The Animal class initializes the

core characteristics of an Animal and defines the default behavior of specific methods (some of

which are overridden by subclasses).

The Animal class has three data fields:

1. private int age

2. private int health

3. private int strength

First, in Animal.java, you need to implement the following constructors:

1. public Animal()

● This no-arg constructor sets the instance variables of the object to these values:

○ age → 0

○ health → 0

○ strength → 0

2. public Animal(int age, int health, int strength)

● This constructor sets the corresponding instance variables of the object to what

the caller of the constructor passed in as arguments. Remember, you must use

the this keyword to access member variables hidden by local variables.

Next, complete the getters and setters to access and mutate the data fields

1. public int getAge()

2. public int getHealth()

3. public int getStrength()

4. public void setHealth(int health)

5. public void setStrength(int strength)

Then, implement the following methods:

1. public boolean sameSpecies(Animal animal)

● This method must return true only when the current object (referring to this

object - this entire writeup will use the same terminology for this) and the input

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

animal are of the same class. Otherwise, it must return false. (Hint: should use

getClass().getName() to return the String of the class name, which means

we don’t have to continually override this method in the subclasses to check if

two Animal objects are of the same species.

2. public int attack(Animal animal)

● This method will be a crucial component of the game.

○ Generate a random int from the range: 1 (inclusive) to the strength of

the current object (inclusive).

○ Decrease the health of the input animal by the int generated based on

the current object’s strength.

○ Return the random int you generated.

● There are many ways to implement this method. It doesn’t matter how you

choose to tackle it, just ensure that the int is between the specified range. For

example, if there is an Animal with a strength of 100. We do not want the

current Animal object to be able to generate an attack that is greater than 100.

3. public String toString()

● This method should return the string representation of the Animal object. Don’t

forget the override annotation (see lecture 12, slide 33). This method will give you

the String representation of an Animal. You may copy and paste the

implementation below, as this method is mainly to help you test and debug your

methods. Example:

@Override

public String toString() {

return "(" + getClass().getName() + ")" + " age: " + getAge() +

"; health: " + getHealth() + "; strength: " + getStrength();

}

Methods to be overridden by subclasses:

1. public void sleep()
● Declare this method so it can be overridden by subclasses that extend from

Animal. (Hint: We did this several times in Assignment 6).

Part 3: Interfaces (0 points)
Create the three Interface files and the methods that they declare, based on the UML

diagram. Remember, you must NOT change the existing signature or the fields.

1. The Carnivore interface has one method:

● public void eatAnimal(Animal animal)

2. The Herbivore interface has one method:

● public void eatPlant()

3. The Poisonous interface has one method:

● public boolean poisonAnimal()

Part 4: Create some Animals (45 points)
Lion, Tiger, Elephant, Rhino, Snake, and Frog are all subclasses of Animal. Complete all

remaining constructors and methods in these classes.

Part 4a: Strictly Carnivores (15/45 points)

Lion

Implement the following constructors and methods:

1. public Lion()

● This no-arg constructor calls Animal’s no-arg constructor (HINT: review

Assignment 6).

2. public Lion(int age, int health, int strength)

● This constructor must set the age, health, and strength in its superclass (HINT:

use super to call the superclass constructor!).

3. public void sleep()

● When a Lion sleeps, they gain 20 strength. Add 20 to the strength field.

○ The “Kings of the Jungle” are ferocious when they’re fully rested!🦁

(Note: Remember to use the override annotation (see lecture 12, slide 33).

https://docs.oracle.com/javase/tutorial/java/IandI/super.html

4. public void eatAnimal(Animal animal)

● When a Lion eats another animal, they gain half of the strength of the animal

being eaten (in order to remain at the top of the food chain). Take the strength

of the input Animal, divide it by 2 and add it to the current Lion’s strength.

(Note: Remember to use the override annotation (see lecture 12, slide 33).

Tiger

Implement the following constructors and methods:

1. public Tiger()

● This no-arg constructor calls Animal’s no-arg constructor (HINT: review

Assignment 6).

2. public Tiger(int age, int health, int strength)

● This constructor must set the age, health, and strength in its superclass (HINT:

use super to call the superclass constructor!).

3. public void sleep()

● When a Tiger sleeps, they gain 15 strength. Add 15 to the strength field.

(Note: Remember to use the override annotation (see lecture 12, slide 33).
4. public void eatAnimal(Animal animal)

● When a Tiger eats another animal, they gain a third of the strength of the

animal being eaten (in order to remain at the top of the food chain). Take the

strength of the input Animal, divide it by 3 and add it to the current Tiger’s

strength.

○ Fun fact: Tigers are actually more aggressive and stronger than Lions, but

for the purpose of this assignment, Lions will be at the top.🐯

(Note: Remember to use the override annotation (see lecture 12, slide 33).

https://docs.oracle.com/javase/tutorial/java/IandI/super.html

Part 4b: Herbivores (15/45 points)

Elephant

Implement the following constructors and methods:

1. public Elephant()

● This no-arg constructor calls Animal’s no-arg constructor (HINT: review

Assignment 6).

2. public Elephant(int age, int health, int strength)

● This constructor must set the age, health, and strength in its superclass (HINT:

use super to call the superclass constructor!).

3. public void sleep()

● When an Elephant sleeps, they only gain 10 strength. Add 10 to the strength

field.

○ Fun fact: Elephants don’t sleep a lot (only 3 to 7 hours a night on

average) because they need more time to eat!🐘

(Note: Remember to use the override annotation (see lecture 12, slide 33).
4. public void eatPlant()

● An Elephant instance is an Herbivore, so they don’t eat animals. Instead, they

graze on some plants and will randomly gain between 0 (inclusive) and 40
(inclusive) strength. You may import java.util.Random for this method.

(Note: Remember to use the override annotation (see lecture 12, slide 33).

Rhino

Implement the following constructors and methods:

1. public Rhino()

● This no-arg constructor calls Animal’s no-arg constructor (HINT: review

Assignment 6).

2. public Rhino(int age, int health, int strength)

● This constructor must set the age, health, and strength in its superclass (HINT:

use super to call the superclass constructor!).

3. public void sleep()

● When a Rhino sleeps, they gain 15 strength. Add 15 to the strength field.

○ Fun fact: Rhinos sleep on average 8 hours a day (must be nice right).🦏

https://docs.oracle.com/javase/tutorial/java/IandI/super.html
https://docs.oracle.com/javase/tutorial/java/IandI/super.html

(Note: Remember to use the override annotation (see lecture 12, slide 33).
4. public void eatPlant()

● An Rhino instance is an Herbivore, so they don’t eat animals. Instead, they graze

on some plants and will randomly gain between 0 (inclusive) and 25 (inclusive)
strength. You may import java.util.Random for this method.

(Note: Remember to use the override annotation (see lecture 12, slide 33).

Part 4c: Poisonous-Carnivores (15/45 points)

Snake

Implement the following constructors and methods:

1. public Snake()

● This no-arg constructor calls Animal’s no-arg constructor (HINT: review

Assignment 6).

2. public Snake(int age, int health, int strength)

● This constructor must set the age, and strength in its superclass (HINT: use

super to call the superclass constructor!).

3. public void sleep()

● When a Snake sleeps, they gain 15 strength. Add 15 to the strength field.

4. public void eatAnimal(Animal animal)

● When a Snake eats another animal, they gain all of the strength of the animal

being eaten. Take the strength of the input Animal and add it to the current

Snake’s strength.

○ Snakes swallow their prey whole, so they gain all the strength.🐍

5. public boolean poisonAnimal()

● A Snake has a 40% chance to poison the other animal. If that animal is poisoned,

they will die at the end of the round even if they win the battle. If the Snake wins

the battle it doesn’t matter (this will be implemented later). Basically, return true

40% of the time.

○ (Implementation Hint: The nextDouble() method from the Random
package is used to get the next pseudorandom, uniformly distributed

double value between 0.0 and 1.0 from this random number generator's

sequence. You may import java.util.Random for this method.)

https://docs.oracle.com/javase/tutorial/java/IandI/super.html

Frog

Implement the following constructors and methods:

1. public Frog()

● This no-arg constructor calls Animal’s no-arg constructor (HINT: review

Assignment 6).

2. public Frog(int age, int health, int strength)

● This constructor must set the age, and strength in its superclass (HINT: use

super to call the superclass constructor!).

3. public void sleep()

● When a Frog sleeps, they gain 10 strength. Add 10 to the strength field.

4. public void eatAnimal(Animal animal)

● A Frog can’t really eat any of the animals here… so they’ll eat a bug instead. If

the Frog defeats the input Animal, then they will eat one of the bugs swarming

the dead carcass. The bug will be worth a quarter of the strength of the input

Animal. Take the strength of the input Animal, divide it by 4 and add it to the

current Frog’s strength.

○ Fun fact: Poison frogs are the most brightly colored frogs in the world.🐸

5. public boolean poisonAnimal()

● A Frog has a 20% chance to poison the other animal. If that animal is poisoned,

they will die at the end of the round even if they win the battle. If the Frog wins

the battle it doesn’t matter (this will be implemented later). Basically, return true

20% of the time.

○ (Implementation Hint: The nextDouble() method from the Random
package is used to get the next pseudorandom, uniformly distributed

double value between 0.0 and 1.0 from this random number generator's

sequence. You may import java.util.Random for this method.)

https://docs.oracle.com/javase/tutorial/java/IandI/super.html

Part 5: AnimalActivities.java (25 points)
Finally, the cool part! You will be implementing an AnimalActivities class with two unique

static methods related to animals. The first method fight() will be our game and the second

method reproduce() is to add some depth to our animal-related assignment. Based on the

UML diagram above, you only need to worry about implementing the two methods above the

space in the AnimalActivities class, the rest will be provided for you.

First, implement the AnimalActivities constructor:

1. private AnimalActivities()

● Our AnimalActivities class will primarily be two static methods. Therefore, to

prevent instantiation of a class with no instance methods, declare a private

no-arg constructor.

Method 1 - fight (15 points)

The first method is fight. The method signature for it is:

public static int fight(Animal animal1, Animal animal2)

● This method is a bit intricate, as it involves printing things to the terminal to display our

game. We will provide you with a lot of the necessary methods to get this method

working, but it is your job to weave in the logic required to tie all the pieces together.

● Overview of the method:

○ Every round, both animal1 and animal2 will call their attack() method to

generate a random int and deal damage to the other animal.

○ Once one of the animals’ health hits 0 or goes below 0 (<= 0), then that animal

has died and the other one is the winner.

○ The winner gets to eat something and will call their respective method.

■ Carnivores: will call their eatAnimal() method on the losing animal

because they get to eat their prey.

■ Herbivores: will call their eatPlant() method because they did not die.

○ At the start of a fight, Poisonous animals will call their poisonAnimal() method,

such that in case they lose the fight, the other animal will also die and it will be a

tie. They can still poison the other animal and win the fight.

○ If both animals die, it is a tie game.
■ An animal has won, but has been poisoned as well.

■ Both animals do enough damage to each other, such that the health of

both animals are less than or equal to 0 in the same round.
○ Return value:

■ 0 → tie game (both died)

■ 1 → animal1 won

■ 2 → animal2 won

● Full logical walkthrough of the method:
1. Check if either animal1 and animal2 are poisonous (instanceof Frog or Snake)

● Invoke the respective poisonAnimal() method. Have some booleans to

keep track if the other animal is successfully poisoned, which is when

poisonAnimal() returns true. (Note: both animals could be poisonous!)

2. Keep track of the round number (starting at 0)

3. While the health of both animals are above 0:

● printRound(<your variable>)

● printBothAnimals(animal1, animal2)

● printAttack(LEFT, <animal1’s attack()>)

● printAttack(RIGHT, <animal2’s attack()>)

● Increment round number

– At this point, one or both the animals have died and you exit loop –

4. printFinalStats(animal1, animal2, poisoned)

5. Check if both animals died from attacking each other → printTieGame()→

return 0

6. Check if animal1 wins, if they won:

● Check if animal1 has been poisoned → printTieGame()→ return 0

● Invoke their respective eating method: (eatAnimal() or eatPlant())

● printWinner(LEFT)

● return 1

7. Repeat step 6 but change for animal2 (printWinner(RIGHT) and return 2)

REMEMBER:When you use instanceof to check the subclass of the Animal, you must
explicitly cast the animal to that subclass in order to invoke its corresponding method.

These are the necessary methods you need to copy and paste into your AnimalActivities

class, to get the game working. We will provide as much detail as possible. You will need to

copy and paste the code we provide for you below at the bottom of your AnimalActivities

class. You will also need to copy and paste the constants for these methods.
1. public static void printBothAnimals(Animal animal1, Animal animal2)

2. public static int calcSpacing(String str)

3. public static void printRound(int round)

4. public static void printAttack(String side, int damage)

5. public static void printFinalStats(Animal animal1, Animal animal2,

boolean poisoned)

6. public static void printTieGame()

7. public static void printWinner(String side)

Copy and paste these methods into your AnimalActivities class (preferably at the bottom).

You may have to reformat and provide proper indentation, refer back to the write-up if needed.

/* Below are helper methods to make fight() work */

/**

* Use this method in fight() to display the stats of both animals together

*

* @param (animal1) Animal on the left side to display stats

* @param (animal2) Animal on the right side to display stats

*/

public static void printBothAnimals(Animal animal1, Animal animal2) {

int ageSpacing = calcSpacing(Integer.toString(animal1.getAge()));

int healthSpacing = calcSpacing(Integer.toString(animal1.getHealth()));

int strSpacing = calcSpacing(Integer.toString(animal1.getStrength()));

int animalSpacing = calcSpacing(animal1.getClass().getName());

String str = "(" + animal1.getClass().getName() + ")" +

" ".repeat(animalSpacing) + "(" +

animal2.getClass().getName() + ")\n" +

"----------" + " " + "----------\n" +

"A: " + animal1.getAge() + " ".repeat(ageSpacing) +

"A: " + animal2.getAge() + "\n" +

"H: " + animal1.getHealth() + " ".repeat(healthSpacing) +

"H: " + animal2.getHealth() + "\n" +

"S: " + animal1.getStrength() + " ".repeat(strSpacing) +

"S: " + animal2.getStrength() + "\n";

System.out.println(str);

}

/**

* Helper method for printBothAnimals()

*

* @param (str) String on the left - used to calculate spacing

* @return An int describing how many spaces to put between strings

*/

public static int calcSpacing(String str) {

int totalWidth = SPACING;

int str1Width = str.length();

int spacing = (totalWidth - str1Width);

if (spacing < 0) {

return 0;

}

return spacing;

}

/**

* Use this method in fight() to display the current round.

* @param (round) An int of the round (should start at 0)

*/

public static void printRound(int round) {

System.out.println();

System.out.println("Round " + round + ":");

}

/**

* Use this method in fight() to display the damage each round.

*

* @param (side) The side of the Animal that invoked the attack().

* @param (damage) The int (damage) returned from an attack() call

*/

public static void printAttack(String side, int damage) {

System.out.println(side + " does " + damage + " damage!");

}

/**

* Use this method in fight() to display final stats and poison status.

*

* @param (animal1) Left animal

* @param (animal2) Right animal

* @param (poisoned) If either animal was poisoned

*/

public static void printFinalStats(Animal animal1, Animal animal2,

boolean poisoned) {

System.out.println();

printBothAnimals(animal1, animal2);

if (poisoned) {

System.out.println("An animal was poisoned.");
}

}

/**

* Use this method in fight() to display a tie game.

*/

public static void printTieGame() {

System.out.println("-------GAME OVER-------");

System.out.println("TIE: Both animals died!");

}

/**

* Use this method in fight() to display the winner.

* @param (side) The side of the Animal that won.

*/

public static void printWinner(String side) {

System.out.println("-------GAME OVER-------");

System.out.println(side + " animal wins!");

}

Copy and paste the helpful constants needed for these methods to work properly (at the top).

// Necessary constants

private final static int NUM_ANIMALS = 6;

private final static int SPACING = 17;

private final static String LEFT = "Left";

private final static String RIGHT = "Right";

Method 2 - reproduce (10 points)

The second method is reproduce. The method signature for it is:

public static Animal reproduce(Animal animal1, Animal animal2)

● Based on the two Animal objects being passed into this method, return a new Animal

object (the baby) if the following conditions are met:

○ Both Animal objects are of age, such that animal1 and animal2 are both strictly

older than 5.
○ Both Animal objects are of the same species (Hint: we made a method for this)

● Follow these rules:

○ Based on the instanceof the Animal object, return an Animal with the same

declared type as the input Animal objects.

■ For example, if the input Animal objects are both Lions, then return a

new Lion().

○ The baby being returned should have these default characteristics:

■ Age = 0

■ Health = 100

■ Strength = half of the average strength of both parents

● If none of the above conditions are met, return a new Animal() object of the superclass

type, using the no-arg constructor.

(OPTIONAL) Additional Fun (0 points)

If you would like to have some more fun, you can copy and paste this code to create random
animals! This is completely optional, but in case you don’t want to keep instantiating your own
animals. You will have to define your own MAX_AGE, MAX_AGE, and MAX_STRENGTH constants to
what you want them to be.

/* Below are helper methods to make a random Animal object*/

/**

* Use this method to create a random Animal object of a random subclass.

* @return random new Animal (Lion, Tiger, Elephant, Rhino, Snake, Frog)

*/

public static Animal randomAnimal() {

int randAge = randomAge(MAX_AGE);

int randStrength = randomStrength(MAX_STRENGTH);

int randClass = new Random().nextInt(NUM_ANIMALS);

switch (randClass) {

case 0: return (new Lion(randAge, MAX_HP, randStrength));

case 1: return (new Tiger(randAge, MAX_HP, randStrength));

case 2: return (new Elephant(randAge, MAX_HP, randStrength));

case 3: return (new Rhino(randAge, MAX_HP, randStrength));

case 4: return (new Snake(randAge, MAX_HP, randStrength));

case 5: return (new Frog(randAge, MAX_HP, randStrength));

default: return new Animal();

}

}

/**

* Use this method for randomAnimal()

* @param (max) Max age acceptable

* @return age

*/

public static int randomAge(int max) {

int randAge = (int)(Math.random()*(max+1));

return randAge;

}

/**

* Use this method for randomAnimal()

* @param (max) Max strength acceptable

* @return strength

*/

public static int randomStrength(int max) {

int randStrength = (int)(Math.random()*(max+1));

return randStrength;

}

Part 6: Compile, Run and UnitTest Your Code (10 points)
Just like in previous assignments, in this part of the assignment, you need to implement
your own test cases in the method called unitTests in Assignment8.java. You might
want to refer to previous assignments as a framework.

Example: how you can set-up and run the game in your test file and what it looks like.

The Snake poisoned the Tiger, but the Snake won anyways!

In Assignment8 you can unit test individual methods. You are encouraged to create as many
test cases as you think to be necessary to cover all the edge cases. The unitTests method
returns true only when all the test cases are passed. Otherwise, it returns false.

To get full credit for this section, you must create at least five test cases that cover
different situations for these methods - sleep(), eatAnimal(), poisonAnimal(),
encounter(), and reproduce(). In other words, do whatever you need to do to make at least
one test for each of the methods above (it doesn’t have to be a formal or well-written test
case, just have a minimum of five test cases in Assignment8.java that should help test the
correctness for full points).

Here are some potential ideas:
● sleep()

○ Make an animal, make it sleep, check the strength
● eatAnimal()

○ Make two animals, make one eat the other, check strength
● poisonAnimal()

○ Run this method several times, make sure the probability is always within range,
check that it returns true/false accordingly.

● fight()

○ Set up a game where one of the animals WILL win (giving an animal very low
strength), check the int you return.

● reproduce()

○ Make two animals, call reproduce() , check the return value.

If you want to test specific methods, you can just instantiate animals to be the correct subclass
to avoid needing to cast everytime. For example, just declare a new Lion() to test Lion’s
eatAnimal() method. Remember to use our toString() method to display your Animal objects.
You can compile all the files present in the directory and run your unit tests from main() using
the following commands: (Make sure you are in the correct directory, else navigate to the starter
code using cd)

> javac *.java

> java Assignment8

Remember that writing unit tests will help you find bugs in your code and ensure that it is correct
for different inputs.

Submission

You’re almost there! Please follow the instructions below carefully and use the exact
submission format. Because we will use scripts to grade, you may receive a zero if you do
not follow the same submission format.

1. Open Gradescope and login. Then, select this course → Assignment 6.
2. Click the DRAG & DROP section and directly select the required files:

Assignment8.java, Animal.java, AnimalActivities.java, Carnivore.java,

Herbivore.java, Poisonous.java, Lion.java, Tiger.java, Elephant.java,
Rhino.java, Snake.java, and Frog.java. Drag & drop is fine. Do not submit a zip, just
the nine files in one Gradescope submission. Make sure the names of the files are
correct.

3. You can resubmit unlimited times before the due date. Your score will depend on your
final (most recent) submission, even if your former submissions have higher scores.

4. Your submission should look like the below screenshot. If you have any questions, feel
free to post on Piazza!

